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Problems of the stress state of an unbounded elastic medium containing a conical defect (a crack or a fine inclusion) and loaded 
with an unsteady torsional elastic wave or an impact load in the form of a torsional moment are solved. Using the discontinuous 
solutions of the equations of dynamic elasticity for a conical defect constructed earlier, the problem is reduced to an 
integrodifferential equation (in the case of a crack) or an integral equation (in the case of an inclusion) in the space of Laplace 
transforms. A method is proposed for solving these last equations based on the combined use of the method of orthogonal 
polynomials and the discretization of the equation with respect to time. A formula is obtained and the time-dependence of the 
stress intensity factor near the edge of the crack and the angle of rotation of the inclusion is calculated. © 2005 Elsevier Ltd. 
All rights reserved. 

Problems concerning the stress state of an elastic medium containing a conical defect have been solved 
in a static formulation [1] using discontinuous solutions of Lame's equation in the Gutman form [2]. 
An axisymmetric problem in the theory of elasticity for a space with a conical cut was considered 
in [3]. 

Below, we propose an efficient method for solving a new dynamic time-dependent problem of the 
stress state of an elastic medium when there is a conical defect in it either in the form of a fine inclusion 
(a conical shell) or in the form of a cut along a conical surface. In order to check the effectiveness of 
the method, mechanical characteristics are calculated for actual materials and dimensions of the defect. 
A solution is constructed using the method of discontinuous solutions, which enables the problem to 
be reduced to a system of one-dimensional integrodifferential or integral equations in the space of 
Laplace transforms with respect to time. 

The method of discontinuous solutions is an original special implementation of the method of 
potentials, adapted for the efficient use of integral transforms and which is related each time to a suitable 
orthogonal system of coordinates (which is dictated by the formulation of the problem). Also, whereas 
in the general scheme in the method of potentials a discontinuous solution is constructed in the form 
of a linear combination of the potentials of a single and double layer (for which a complex preliminary 
procedure for elucidating the mechanical meaning of the above-mentioned potentials has to be carried 
out), in the method of discontinuous solutions the discontinuities in the required mechanical quantities 
are specified or, more accurately, are assumed to be temporarily known. Here, some of the discontinuities 
are, in fact, known from the formulation of the problem, and the rest are found by satisfying the 
conditions on the defect. Subsequent application of an inverse Laplace transformation, taking account 
of the contraction theorem, reduces the equations to two-dimensional equations. The solution of the 
equations is based on the combined use of time-discretization and the method of orthogonal polynomials, 
which leads to the solution of a sequence of infinite systems of linear algebraic equations. 

tPrikl. Mat. Mekh. Vol. 69, No. 3, pp. 469-480, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
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1. F O R M U L A T I O N  OF T H E  P R O B L E M  

A conical defect is contained in an unbounded elastic medium and the surface of this defect is described 
in a spherical system of coordinates by the relations 

a<_r<_b, 0 = co, -rc<tp_<rt (1.1) 

On passing through the surface (1.1), the displacements u~(r, O, t) - u(r, O, t) and the stresses 
Zoo(r, O, t) - z(r, O, t) undergo discontinuities of the first kind with jumps 

(u(r, co, t)) = u(r, co-O, t ) - u ( r ,  co+O, t) 
(z(r, co, t)) = z(r, co- O, t) - x(r, co + O, t) (1.2) 

When the defect (1.1) is a crack, the displacements undergo discontinuities but, if the defect is a thin, 
absolutely rigid, conical shell which is coupled to the medium, only the stresses are discontinuous. It 
is assumed that an elastic unsteady torsional wave which travels from infinity [4] 

u°(r, O, t) = s inO[H(c t -  rcosO) - H ( c t -  rcosO - Cto)] (1.3) 

interacts with the crack or with the fixed shell, where H(z) is the Heaviside unit function, to is the duration 
of the pulse and c is the wave propagation velocity. 

The displacement u(r, O, t) satisfies the equation [5] 

(red) ,+ (sinOu') u _ r 2 ~ 2 u  

sinO sin2 0 C2 at  2 (1.4) 

where a prime indicates a derivative with respect to the variable r and a dot denotes a derivative with 
respect to the variable 0. 

In the case of a crack, the condition that there are no stresses on the edges (0 = co - 0 and 
0 = co + O) of the crack 

z(r, 0, t)10 = ~o = 0 (1.5) 

has to be satisfied. In the case of zero initial conditions, it is necessary to determine the stress intensity 
factor at the edges of the crack. 

If the shell is fixed, it is assumed that a dynamic load acts in the form of the elastic torsional wave 
(1.3) which is incident from infinity. The condition for the continuity of the displacements 

u(r, O, t)[0=c o = 0 (1.6) 

is then satisfied on the surface of the inclusion. The reactive moment in the shell has to be determined 
in the case of zero initial conditions. 

If, however, the shell is not fixed, then it is assumed that it is loaded with an impact load in the form 
of a torque M = AH(t )  under the action of which it may be rotated around an axis of revolution by an 
angle ~(t) together with the elastic medium. In this case, the condition on the surface of the inclusion 
takes the form 

u(r, O, t ) l o=o  , = ct(t)r (1.7) 

and it is necessary to determine the unknown angle of rotation of the inclusion a(t). 

2. R E D U C T I O N  OF T H E  P R O B L E M  TO AN I N T E G R O D I F F E R E N T I A L  
E Q U A T I O N .  T H E  CASE OF A CRACK 

We will represent the displacement and stress fields in the form 

up(r, O) = o 1 Up(r, O) + Up(r, O) 

~p(r, O) 0 1 ze(r, O) + "Cp(r, O) 
(2.1) 
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wherep is the parameter of the Laplace transformation with respect to time, u ° and "c o are the Laplace 
transforms of the displacements arid stresses caused by the incident wave when there is no defect in 
the elastic medium, and @ and "Cp 1 are the transforms of the required perturbed displacement and stress 
fields due to the existence of the defect (1.1) in the medium. The perturbed field is constructed in the 
form of a discontinuous solution [6] of the equation of motion for the defect (1.1), in which the 
discontinuity of the displacements and stresses is contained. 

The Laplace transform of the discontinuous solution of the torsional equation (1.4) has the form [7] 

- (U;( o, 0)))ao(rs, ps; O, 0))do] 

(2.2) 

1 Go(rs, ps; O, 0)) = ~ y~ (2k+ 1)Pk(cos0))Pk(cosO)Jk(rs, ps) 
k=O 

(2.3) 

l___~llv(rs)Kv(PS ), r < 9 1 p 
= ; v = k+ s = - (2.4) Jk(rs' 9s) s4r~[lv(PS)Kv(rs),  r> p 2' c 

Here, Iv and Kv are modified Bessel functions of half-integral order, Pk are Legendre functions and Up 
is the Laplace transform of the wave function. 

It is required to relate the discontinuity of the function ~p and the discontinuity of its normal derivative, 
which occurs in the discontinuous solution (2.2), to the discontinuities of the mechanical quantities. 
We shall now deal with this, taking account of the formula which relates the transforms of these 
discontinuities and the transforms of the discontinuities of the displacements and stresses (G is Young's 
modulus) 

(Up(r, CO)) = -s I[sG -I 1 1 ('~p(p, 0))) + 2ctg~(Up(p, 0)))]Jo(rs, ps)dp (2.5) 
o 

1 (U; ( r ,  0))) = - ( . p ( r ,  0)~) (2.6) 

Taking boundary condition (1.5) into account, in accordance with relation (2.5), we write the relation 
for determining the discontinuity of the wave function in the form 

(Up(r, 0))) = - 2 s c t g 0 )  I 1 (Up(p, 0)))Jo(rs, ps)dp 
0 

The transforms of the discontinuities of the wave function and its derivative will be found if the 
transform of the discontinuity of the displacements (@ (r, co)) is known. With the aim of determining 
this, we write the condition on the crack (1.5) which, according to the representation (2.1), takes the 
form 

"Clp( r, 0)]0 = c0-0 = -Z~(r, 0)) (2.7) 

The relation 

-1 1 rG r,p(r, ~ -  0) = 2ctgmUp(r, m-  0) + LsUp(r, 0)- O) (2.8) 

is taken into account for determining the left-hand side of equality (2.7), where 

L, f  = (r2f') ' -  (rs)2f (2.9) 
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1 sincoi [(q,p(p, I0 ~4/ p(r ,  0 ) - 0 )  = - ~ ( ~ p ( r ,  CO)) - co ) }~Go( r s ,  ps; O, co) =co- 
o 

- ( W p ( p ,  co))Go(rS, ps; O, co)lo = to]dP 

We(r, co- O) = ~ W p ( r ,  co - O) 

(2.10) 

Into the second relation of (2.10), we now substitute the values of the transforms of the discontinuities 
of the wave function and its derivative, expressed in terms of the transform of the discontinuity of the 
displacements which, in turn, we substitute into relation (2.8). It is therefore necessary to solve the 
integrodifferential equation in order to determine the discontinuity of the displacements. 

We now make a replacement in the resulting formulae. We will temporarily assume that the Laplace 
transformation parameter s is positive and put 

-1  S - 1  r = xs , p = ~ (2.11) 

We now carry out the replacement (2.11) in relation (2.9) and in the second relation of (2.10) and 
introduce the notation 

d 2 d 1 2 2 
X(r, co) = (Up(r,  co)), L x = x - -  + 2x + x (2.12) 

dx 2 

Taking into account the replacement (2.11), we write relation (2.8) in the form 

2 
- 1  ~ - 1  1 ~ - 1  ~ ,  ~ - 1  COS co r [ ' .  zv_ - 1  

xs (i ZptXS , co-o)  = -zs  sinco CxJ ~ g s  ' co)S3(x' ~; co)d~+ 
0 

+ coscoL~X(~s -~, co)s2(x, ~; co)at- s -1 cos coL~fx(~ -~, co)s, (x, ~; co)d~- 
0 0 

(2.13) 

- sincoLx~X(~s -1, co)So(x, ~; co)d~ 
0 

where 

2 k + l  .rp1, 2 
S3(x' {; co) = ~ ~ 1  [k(--~+ 1)] 2t k(c°sco)] Jk(x' ~) 

S2(x, 9; co) = 2k+ 1 1 
~-~ [k( k + 1) ] Pk( c°sco)Pk( c°sco)J~(x' 9) 

k = l  

Sl(x,  9; co) 
2k+ 1 1 

Z [k(k + ~)1 'Pl~(cOsco)Pk(cOsco)(JO(x' ~) - Jk(x' ~)) 
k = l  

2 
So(x, ~; co) = ~ (2k + 1)[P~(cosco)] Jk(x, ~) 

k = l  

The relation LxJk(X, ~) = k (k  + 1)Jk(x, 9) has been used here. 



Time-dependent problems of the concentration of elastic stresses near a conical defect 431 

In order to separate out the singular part from the kernels of the resulting integral operators, we 
consider the asymptotic form of the expressions obtained when k --+ ~ .  According to the formulae which 
define the behaviour of Bessel functions for large values of the order [8, formulae (9.7.7) and (9.7.8)], 
we obtain that 

___L_I 
Jk(x' ~) = 2k + 1 k,~) 

The asymptotic behaviour of Legendre functions when k ~ oo [9] gives 

1 + s in(2k + 1)03 
[Pk(cos03)] z = Qk(03) + 0(k-3/2) , Qk(03) = 7tksin03 

Substituting the resulting expressions into the series S0(x, ~; 03), we find that the asymptotic behaviour 
of the kth term of the series, which is generated by the last term on the right-hand side of equality (2.13), 
is described by the expression Qk(03)(x/~) k. 

The following operation is carried out in order to separate out the singularity in the last term of relation 
(2.13): the series So(x, {; 03) is represented in the form of the sum of two terms 

So(x,  03) = + 

I k = N + l  

(2k + 1)[Pk(cos03)]2jk(x, ~)d~ 

The terms of the series for large value of k are replaced by their asymptotic expressions. In the resulting 
N 

relation, the finite sum ~ Qk(03)(x/{) k is then added and subtracted, which reduces the series So(x, ~; 03) 
to the form k = 1 

1 ~ l ( x ~  k 
So(x,~; 03) = gsln03k__~l~¢~,~ ) +(~I(x'~) 

1 
(x,  = 

N N 

y. O.k(03)(x/~)k+ ~ (2k + 1)[Pk(cos03)12j~(x, ~)-  ~., Qk(03)(xl~) k 
k = l  k = l  k = l  

z ~  J'qk~03 ~ _ sin(2k+ 1)03 
rtksin03 

The series in the expressions for So(x, {; 03) are summed using well-known formulae [10], formulae (5.4.9) 
(12, 13) and (5.2.4) (4)]. Finally, we obtain the last term on the right-hand side of equality (2.13) in the 
form 

1Lx f X(~s-l, 03)Ilnl~ l~_x[ + o~l (x, ~) + ot2(x, ~)ld~, 
o 

O~2(X, ~) 
= l n x +  

L SX S(X~)  3/2' 

Using the formulae for the asymptotic behaviour of Bessel and Legendre functions for a large value 
of the order, it can be shown that the first three terms on the right-hand side of equality (2.13) make 
no contribution to the singular part. 

We now return to the initial variables in equality (2.13) and separate out the term carrying the greatest 
singularity. The second derivative is such a term. We then satisfy the condition on the crack (2.7). As 
a result, we obtain 

2 b b 

d~2IX(p, 03)ln~r_--~dp + IX(p, 03)R(r, O, s)dp = f(r,  s) 
£1 a 

(2.14) 
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2 d [ _  lnFr- 91 + o~1( rs, ps) + o~2(rs, ps)] + R(rs, 9s) = rsdr 

d 2 
+ ctg03-~r2[SqSl(rs, ps; 03) + S2(rs, ps; 03) +4ctg03s-lS3(rs, ps; 03)] + 

1 d -1 
+ ctg03r~r[4S Sl(rs, 9s; 03) + 4S2(rs, 9s; 03) + 8ctg03s-lS3(rs, 9s; 03)1 - 

-ctg03[sSl(rs, ps; 03)-2sZS2(rs, 9s; 03)-4ctg03S3(rs, ps; 03)] 

Gs-lr -3 O, 03) 
f (r ,  s) = - sin03 "~pl, r, 

3. R E D U C T I O N  OF T H E  P R O B L E M  TO AN I N T E G R A L  E Q U A T I O N .  
T H E  CASE OF AN I N C L U S I O N  

Taking representation (2.1) into account, we write the condition on the inclusion (1.6) in the form 

= o 
u~(r, O) o= m-o -Up(r, m) (3.1) 

The left-hand side of equality (3.1) is determined by formula (2.2), taking account of the fact that 
the shell is coupled to an elastic medium, which means that, in relations (2.5) and (2.6), it is necessary 
to put 

1 (up(r, 03)) = 0 (3.2) 

The required transform of the discontinuity of the stresses is denoted by Cbp(r) = (,c 1 (r, m)). Taking 
(2.5), (2.6) and (3.2) into account, we then write relation (2.2) in the form 

1 2sin03Oe,-qb ,- e a 
Up(r, O) = - s  -~ g 0 J  ¢ p(g)J~--~G0(rs, ps; O, m)Jo(PS , ~s)d~d 9 

o o 

(3.3) 

Taking the limit 0 = 03 - 0 in equality (3.3) and using condition (3.1), we obtain the following integral 
equation in the space of Laplace transforms 

b 

f(Y~p((Y)Kp(r, cy)d• = o -Gup(r, 03) 
o 

Kp(r ,  i f )  = s in03 ~ .  2k  + 1 1 2 f fs)  - Jk(rs ,  (ys)) k=lsZ[k( k + 1)] 2Pk(c°s03) (J°(rs' 

(3.4) 

Investigating the asymptotic form of the kernel when k ~ ~, and carrying out operations with respect 
to the summation of the weakly converging part of the series in relation (3.4) in a similar manner to 
the procedure carried out above in the case of Eq. (2.9), we obtain the integral equation 

b b 
sin03 1 -~ I ln~--7~Op(~)d(~ + sm---nm2 IM(r, ~, S)*p((~)d(~ = -Gu°p(r) 

ES 
a a 
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M ( r , ~ , s )  = ~ s i n ( 2 k + l ) c o ( ~ )  k -  - i 2k+l)[p~(cosOa)]2jk(rs,~s)+ 
k k(k + 1 

k = l  k = l  

I lncy, 

i/r/  1 ~ \ ~  + 1 lnr+  ~-_.___ r, = l k ( k + l )  ~ + 
v sr sr~ 

r > 6  

(3.5) 

4. SOLUTION OF THE CRACK PROBLEM 

In order to apply the contraction theorem for an integral Laplace transform to equality (2.14), the functions 

@(p, CO, t) = L q ( X ( 9 ,  CO)), D(r, p, t) = Lq(R(rs ,  ps)), F(r, t) = L q ( f ( r s ) )  

are introduced. Here, L -1 is the inverse Laplace transformation operator. Tabulated inversion formulae 
[11] 

[0, t < a - b  

~2@babPO_ l/2((2ab)q(a 2 + b 2 - t2)), a - b < t < a + b 
t -1  [lo(ap) K~(bp)] Zo(t, a~ b) 

I - -  
| I__~Q~ 1/2((2ab)-l(t2 aZ_b2)),  t > a + b  
trc4ab - 

are used to invert the function R(rs, 9s). 
As a result, we write the original function R(rs, 9s) in the form 

-1 1 I , D(r, p, t) = ctgm ~ (2k + 1)[k(k + t)] Pk(cosm)P~(cosm)t_lf2k(t' r, 9) + 
k = l  

+ !lf2k(t, r, p) - Zo(t, r, p) + Zo(t, r, p) + 

,, 1 , rOZo(t, r, p) ] 
+ 2~'~k (t, r, 9) + r2~"~k( t, r, p) + 2~. -~t + Zo(O, r, P) + 

- 2  1 2 , 
+ 4ctg2m Z (2k + 1)[k(k + 1)] [Pk(cosm)] I3~k(t, r, p) + ~3~k(t, r, 9) + 

k = l  

N 
, q 2 2 + lf2k(t, r, p) + Zo(t, r, P) J + ~ + - r ~ (2k + 1)[P~(cosf.o)]22~2k(t, r, p) + 122(t, r, p) 

k = l  

1 

ink(t, r, p) = It[Z'o(t-t ,  r, p)-Z'o(t-- t ,  r, Plldt 
0 

1 t 

2~2k(t, r, p) = IZo( t - - t ,  r, p)dt, 3~2k(t, r, p) = ~-tZ'o(t--t, r, p)dt 
0 0 

Application of an inverse Laplace transformation to Eq. (2.14) using the contraction theorem leads 
to an integrodifferential equation of the form 

2 b t b  

" \ r . n ,  P . . . . ) , p  + r. p. = r) 
d r ~  f r -p l  oa 

(4.1) 
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Its approximate solution is constructed by the combined use of discretization of the equation with 
respect to time and the method of orthogonal polynomials. The time interval [0, T], during which the 
interaction of the elastic wave with the defect is investigated, is subdivided with a step size h = T/N into 
intervals [ 7~, ~ + 1], where 7k = kT/N (k = 1, 2, ... , N), and the integral with respect to the time Z is 
replaced in Eq. (4.1) by Simpson's quadrature formula, the nodes of which are denoted byAk. We have 

2 b N b 

d~-[hllr E Akf D( tn -~br 'p )*k(p)d9  = Fn(r) 
dr2a k = 1 a 

(4.2) 

where 

n = 1,2 . . . . .  N, ~ ( p )  = ~( t  n,p), Fn(r) = F(t n,r) 

Before using the method of orthogonal polynomials, which is based on the application of the spectral 
relation for Chebyshev polynomials of the second kind [6] 

! d21Iln[xl~_y]~l-y2U~(y)dy:-(n+l)U.(x), Ixl~l, n =  1,2, . . .  
dx2n 

-1 

(4.3) 

we make the change of variables in Eq. (4.2) 

a+ b  b - a  
r = 8++6_x, p = 8++6_y; 5+ = - - ~ ,  8_ = ---~--- (4.4) 

We construct the solution of the system of equations obtained as a result of this change of variables in 
the form 

*,(6+ + 6_y) : ~1 - y 2 y .  ~l,)U,(y) (4.5) 
/ = 0  

After applying the standard scheme in the method of orthogonal polynomials [6], we arrive at 
sequences (n = 1, 2, . . . ,  N) of infinite systems of linear algebraic equations 

m 

a~(k) F(I n), Yl*(ln)- E At E "kml'~'m = 
k = l  m = 0  

l = 0 ,1 ,2 , . . . ;  n = 1,2 . . . . .  N (4.6) 

where 

6 2  - I 1 

YI - 1~(l+ 1)' Bkml : I f I~-x2~/~-y2Um(y)UI(x)D(tn-~'x 'y)dxdy 
- 1 - 1  

1 

: I (x)eX 
-1 

Hence, an infinite system of linear algebraic equations 

yl~(ti) ~ ~ f h ( i )  i ~ ( k )  
- -  Oml-~-m = F t -  ~,  A t ~_, B k m q ) m  , l = O, 1, 2 .. . .  ; i =  2, 3 .... .  N (4.7) 

m = 0  k = l  m = 0  

is obtained for determining each actual value of q~ = qsz (l = 0, 1, 2, ...). 
These systems can be solved approximately by the reduction method. Its applicability is proved using 

a scheme, described earlier in [6], which is based on the proof of the convergence of the series 

c, = E Z 18m't 2' C2-- Z IF, I 
/ = O m = O  / = 0  
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To calculate the stress intensity factor (SIF) at the edges of the crack 

N + = lim [Ja - r'c(r, o~, t)] (4.8) 
r---) a - O  

we make the replacement (4.4) and, after discretization in time, we obtain 

N+(tn)_ ~/b-a  l im [-~fL~--lz(8++8_x, o3, tn)], n =  1,2 ..... N (4.9) 
x - - > -  1 - 0  

where 

"¢(8+ + 8 x, co, tn) - 2sino) d 2 ] 
- b - a d x  z I l n  _ O.(8++8_y)dy+ 

-1 

N 1 

+ ~ sin(o ~ A k ~ D(t .  - -t k, 8+ + 8_x, 8+ + 8_y)qbk(8 + + 8_y)dy - Fn(8 + + 8_x) 
k =  1 -1 

(4.10) 

By virtue of continuity, the last two terms make no contribution to the value of the SIF. 
In order to calculate the limiting expression (4.10), it is necessary to continue the spectral relation 

(4.3) into the interval Ix l > 1. To do this, a result [6] is used, according to which 

(m + 1 )22m + 2 3 
;@21i +m, In[ ~/1-s2Um(s)ds - ( x - - 1 - ~  [F(~ m+ 2; 

m + l ~ F ( 3 + m , m + l ; ~ ; x - + ~ ) ] ,  x < - I  
2 ~ / - 1 - x  \2 x 

32;x+ )x_ 
(4.11) 

where F is the Gaussian hypergeometric function. Using formulae (4.11) and (4.5), we take the limit 
in expression (4.9). 

The final expression for the SIF takes the form 

N+(tn) - ~ a r t Z ( _ l ) t + 1 ( / +  1 )~I  n) 

/ = 0  

(4.12) 

5. SOLUTION OF THE PROBLEM FOR AN INCLUSION 

An inverse Laplace transformation taking account of the contraction theorem, followed by discretization 
in time, according to the scheme described above, is used to solve integral equation (3.5). As a result, 
we obtain the system of integral equations 

b b N - - 2 G  

Iln~r_--I 9lqb.(P)dP + I p E Ak*k(P)M(tn- - tk ' r '9 )dP = ---=---u~(r)slnO) o 
a a k = l  

(5 .1 )  

where 

On(p) = ~(tn, p), n = 1,2 ..... N 

The solution of each integral equation of the system is based on the application of the spectral relation 
for Chebyshev polynomials of the first kind [6] 

I lx___ly I  ln2, n = 0  2 -1/2 , Ixl < 1 (5 .2 )  
rtlIln ( 1 - y )  Tn(y)dy = [n-]Tn(x),  n = 1,2 .... 

-1 
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The change of variables (4.4) is made according to the scheme described above and the solution of the 
equation is then sought in the form of the series 

2 . - 1 / 2  
dPn(y ) = (1 - y ) 2 .  di~In)Tn(Y) (5.3) 

/ = 0  

Implementation of the standard scheme in the method of orthogonal polynomials leads to sequences 
of infinite systems of linear algebraic equations of the form of (4.6), the coefficients of which are 

1 i 

YI = ~ll' ~ Bkml = -1If-1 ~ll---~--~i~-Y + 5_y) M(tn _-tk ' 8+ + 5_x, 8+ + 8 y)Tt(x)Tm(y)dxdy 

1 0 ( 5 . 4 )  
, u , (x )  

FTl = -! l  ~ T t ( x ) d x  

Each of the infinite systems of linear algebraic equations is approximately solved by the reduction 
method, the applicability of which is proved using the scheme described earlier in [6]. 

The time-dependence of the reactive torque 

b 

Mo(t ) = Iz(r ,  o~, t)dr 
a 

was investigated in the case of a fixed inclusion. In the case of an unfixed inclusion, d'Alembert's principle 
is used to determine the unknown angle of rotation. According to this principle, 

Mo(t ) + AH(t)  = jd2a( t ) /d t  2 (5.5) 

where AH(t)  is the applied torque and J is the specified moment of inertia of the inclusion about the 
axis of revolution. 

Transferring in relation (5.5) into Laplace transform space 

O~p = Mop/(Js 2) + a/(Js  3) (5.6) 

and substituting the resulting expression into condition (1.7), which has also to be written in Laplace 
transform space, we obtain a system of integral equations of the form (5.1), from which the coefficients 
of expansion (5.3) are determined. On inverting the transform (5.6) after this, we obtain the following 
formula for determining the angle of rotation of the inclusion 

t 

o 

(5.7) 

6. RESULTS OF C A L C U L A T I O N S  

The reduction method was used to calculate the mechanical characteristics in the solution of system 
of the form (4.7). In order to achieve an accuracy e = 104 in the calculations, it was found to be sufficient 
to retain 10-12 terms of the expansion. A plastic was chosen as the material of the elastic medium. 

The dependence of the stress intensity factor (SIF) on the parameter t* for different values of the 
crack opening angle co when al = 2a0 is shown in the upper part of Fig. 1. Here 

N+ tc 
N~ - t* - 

(a I - a0) %' a 1 - a 0 

It can be seen that the values of the SIF increase as the crack opening angle increases and the peaks 
of these values are practically coincident in time. 
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Numerical calculations showed that the required accuracy is maintained up to a time value 25 and, 
for long t imes, the error which is accumulated leads to a sharp deterioration in the convergence of the 
calculation. 

Graphs of the SIF in the case of the crack opening angle m = ~/6 for different relative linear 
dimensions of the crack are shown in the lower part of Fig. 1. Not only is there an increase in the absolute 
values of the SlF as the linear dimensions increase but, there is also substantial change in the time at 
which a peak in the value of the SIF occurs: the greater the linear dimension of the crack, the later the 
time at which the maximum value of the SIF occurs. 

The logarithm of the angle of rotation of the inclusion (its linear size al  = 2a0) as a function of the 
dimensionless time for different values of the aperture angle is shown in Fig. 2. The material of the 
inclusion is aluminium. It is clear that the angle of rotation of the inclusion becomes larger as the opening 
angle of the defect increases, which is explained by the substantial effect of inertial forces, that depend 
on the mass of the inclusion, which increases as the dimensions of the defect increase. 

R E F E R E N C E S  

1. VAISFEL'D, N. D., PASTUKH, A. I. and POPOV, G. Ya., Problems on the stress state of a medium containing a conical 
defect. Visn. Dniprope~ Univ. Mekhanika, 2001, 1, 4, 16-24. 

2. GUTMAN, S. G., The general solution of a problem in the theory of elasticity in generalized cylindrical coordinates. Dokl. 
Akad. Nauk SSSR, 1947, 58, 6, 993-996. 

3. MARTYNENKO, M. A., An axisymmetric problem in the theory of elasticity for a space with a conical cut. Dokl. Akad. 
Nauk UkrSSR. Ser. A, 1985, 5, 35-40. 

4. GRILITSKII, D. V. and PODDUBNYAK, A. E, Scattering of an unsteady torsion wave by a rigid fixed sphere in an elastic 
medium. Izv. Akad. Nauk SSSR. MTT, 1980, 5, 86-92. 

5. NOWACHI, W, Teoria sprezystosci. PWN, Warszawa, 1973. 
6. POPOV, G. Ya., The concentration of Elastic Stresses near Punches, Cuts, Fine Inclusions and Reinforcements. Moscow, Nauka, 

1982. 
7. POPOV, G. Ya., Construction of a discontinuous solution of the equations of dynamic elasticity for a conical defect. Dokl. 

Ross. Akad. Nauk, 1999, 369, 5, 624-628. 
8. ABRAMOWITZ, M. and STEGUN, I. A. (editors), Handbook of Mathematical Functions. Gov. Print, Washington, 1964. 
9. BATEMAN, H. and ERDt~LYI, A., Higher Transcendental Functions, Vol. 2. McGraw-Hill, New York, 1955. 

10. PRUDNIKOV, A. P., BRYCHKOV, Yu. A. and MARICHEV, O. I., Integrals and Series, Vol. 2, Special Functions. Gordon 
and Breach, New York, 1986. 

11. OBERHETTINGER, E and BADII, L., Tables of Laplace Transforms. Springer, Berlin, 1973. 

Translated by E.L.S. 


